Les microcontroleurs

PIC

de Microchip

Le 16F84

Y
i [dA
- |] LOsA
-
i |
4 r H

Sommaire
INTRODUCTION iiiuuiiiiieeeisssieessseesssssssssssessssssssssrsssasasssssessssnasssseesssassssesnsssssnssesssnnsnnnnsesennes 3
R I o (O Y PRSP 4
I.1 Aspect externe du 16F84........ccuiiiiiiiiiiiiiiin e 4
1.2 La mémoire programme (flash).......uuurureiiiiiiiiiii e e 5
1.3 La MEMOIrE RAM = RIGISIIES. . ciiiiiiiieieieeeieeeeeeeessessrsrsssss s s e e s eeseeeeeeseeeseessrssnsnnnnnnnnnnnnn 5
1.4 LALU €t |€ regiStre Wi .. vttt s s s e s s s s s s sen s s e s e en s e en e e enn e e ennnans 5
L5 I8 0 [T 6
1.6 Le POrES d' E/S PORTA. . .ccu ittt ettt s s e s s e e e ea e s e s s s eaa e s e s s ean s eannans 6
1.7 Le POrtS d' E/S PORTB.....uuiiiiiiiiiiiiee e s e eerssiss s s s s e easassae s s s s e rnan e e s e e s snnan s e s e e eesnannseesennnnnns 7
1.8 Le TimMeEr TIMRO...ctuuuuiiiiieiiriiis e s e e eerres e e s e e rer e e s e s e s srs e e s e s eeassa e s s e eenr s e eessernsnnnneeannes 7
L9 Le Timer Watchdog WDT (Chien de garde)..........oooeeeereiinieriecinree e e 8
T = o T [I PP 8
I.11 La mémoire EEPROM de CONfiQUIAtioN........cervrrrrrmrumnnnississsssseeseseeseerseeessmsssssnnnnmnnnnnnnnns 9
I.12 La mémoire EEPROM d€ dONNEES..........cceeeiieeeieiiiieninninniiisssssss e e s e s e saeseeseeeeeeesesssssnnnnns 9
1.12.1 Procédure de lecture dans I'EEPROM de données..........ccccvrrrrmrrreiienneisessesssssiinnnns 10
[.12.2 Procédure d'écriture dans I'EEPROM de données...........cccccvvmrmmrereeeeeeneeeeeesssinnanns 10
L13 LeS INTErrUPLIONS. ...ccceuiiieii e s e e s e e s e e e e s 10
[.13.1 Déroulement d'une INterrUptioN........uueeeeeeieiiiiiiiiiiis s 10
1.13.2 Linterruption INT (Entrée RBO DU PORTB).......cuutmtiiiieeieiieeeeiiissinssnsssssseeeeneeenns 11
1.13.3 L'interruption RBI (RB4 A RB7 DU PORTB).....cciiiiitiiiuiieiiseeinnniine e seeesnnnnnsseseesnnnnns 11
1.13.4 L'interruption TOI : Débordement du Timer TMRO..........cceevrrrrrrrnnmnnnniiinreeeeeeeeeeens 11
1.13.5 L'interruption EEI : Fin d'écriture dans 'EEPROM...........ccuuvemmmmmiiisniienseesenneenneennns 11
.14 L'adressage INAIrECL........cooiiiuumeiii i e e e e s r e e e e e e e e e annaas 11
.15 L& CONteUr PrOgramIMe. ... ieeuiiuuiesusiesusrrnssssssrssssssassrssssa s srn s sras s ernssenssrnnsssnsssnnnss 11
I 70 A €10 1 @ T or=1 ol 1= EEPEPUPR 12
0 T =T 10T [Tr= =0 PSPPSRt 12
[.L17 Les instructions du 16F84..........ciiiiuiiiiiiiiii it e e e e e e e e ra e eens 12
I.17.1 Les instructions « orientées octet » (adressage direct).......cccvvevveeereveeeeeevneennnnnnnn, 12
1.17.2 Les instructions « orientées bItS ».....ciiviiiiiiiiiiiiiiiiirr 13
1.17.3 Les instructions opérant sur une donnée (adressage immédiat)...........ccevvvrvvvvnnnns 13
1.17.4 Les instructions de saut et appel de procdures..........ccevveeeeeeeereeeveeeerrrn 13
1.17.5 Le Jeu d'INSEFUCHIONS. . cvuuiiiiiis e e a s e e e e e r e e rna s 14
1.17.6 Etat de quelque registre a I'initialisation.........cccceeeii i, 14
II Les outils de dEVEIOPPEMENL........uvverrrruriiiiiiiiiteeerreereeeeereerrrrrrrresrrr e rreeeeeeseeeeens 15
ILL1 Deux MOt SUF MPLAB.......oiitiiii i s s sra s s s e s ra s rn s s aan s s ranssnnnsns 15
II.2 Les directives de MPASM.......cuuiiiiiiiiiiiiis i s ran s e ra s e ran s eenns 16
I1.2.1 Les directives 1€S PIUS ULIISEES. ...uuuueiiiiieiiiieieeeireeeeeeeereee s e e e e e e e e e e e e eeees 16
II.3 FOrmat deS NOMDIES......ciiiiiiiiciee e e err s e e s e e rna s 17
I1.4 Structure d'un programme &crit en asSEMDBIEUN........uvreiiiiiiiriiei s 17
II.5 Exemples de programme.......cccueeiiieruiiiriissisersssssssssssssssssssssssssssssssssssssssnnsssssnnsseees 19

LT 2S5 (= =] 0= T 22

INTRODUCTION

Un PIC est un microcontrbleur, c’est une unité de traitement de I'information de type
microprocesseur a laquelle on a ajouté des périphériques internes permettant de faciliter
l'interfacage avec le monde extérieur sans nécessiter I'ajout de composants externes.

Les PICs sont des composants RISC (Reduce Instructions Construction Set), ou encore
composant a jeu d'instructions réduit. L'avantage est que plus on réduit le nombre d’instructions,
plus facile et plus rapide en est le décodage, et plus vite le composant fonctionne.

La famille des PICs est subdivisée en 3 grandes familles : La famille Base-Line, qui utilise des
mots d’instructions de 12 bits, la famille Mid-Range, qui utilise des mots de 14 bits (et dont font
partie la 16F84 et 16F876), et la famille High-End, qui utilise des mots de 16 bits.

Nous nous limiterons dans ce document a la famille Mid-Range et particulierement au PIC
16F84, sachant que si on a tout assimilé, on pourra facilement passer a une autre famille, et
méme a un autre microcontroleur.

Pour identifier un PIC, on utilise simplement son numéro :

Les 2 premiers chiffres indiquent la catégorie du PIC, 16 indique un PIC Mid-Range.

Vient ensuite parfois une lettre L, celle-ci indique que le PIC peut fonctionner avec une plage
de tension beaucoup plus tolérante.

Vient en suite une ou deux lettres pour indiquer le type de mémoire programme :

- Cindique que la mémoire programme est une EPROM ou plus rarement une EEPROM

- CR pour indiquer une mémoire de type ROM

- F pour indiquer une mémoire de type FLASH.

On trouve ensuite un nombre qui constitue la référence du PIC.

On trouve ensuite un tiret suivi de deux chiffres indiquant la fréquence d’horloge maximale que
le PIC peut recevoir.

Donc, un 16F84-04 est un PIC Mid-Range donc la mémoire programme est de type FLASH de
référence 84 et capable d'accepter une fréquence d'horloge de 4MHz.

Notez que les PICs sont des composants STATIQUES, c'est a dire que la fréquence d’horloge
peut étre abaissée jusque l'arrét complet sans perte de données et sans dysfonctionnement. Une
version —10 peut donc toujours étre employée sans probléme en lieu et place d’'une —04. Pas
I'inverse, naturellement.

Pourqu0| choisir un PIC ?

Les performances sont identiques voir supérieurs a ses concurrents

Les prix sont les plus bas du marché

Trés utilisé donc trés disponible

Les outils de développement sont gratuits et téléchargeables sur le WEB

Le jeu d'instruction réduit est souple, puissant et facile a maitriser

Les versions avec mémoire flash présentent une souplesse d'utilisation et des avantages
pratiques indéniables

La communauté des utilisateurs des PICs est trés présente sur le WEB. On trouve sur le net
quasiment tout ce dont on a besoin, tutoriaux pour démarrer, documents plus approfondis,
schémas de programmeurs avec les logiciels qui vont avec, librairies de routines, forums de
discussion . . .

I LEPIC16F84

Les caractéristiques principales du 16F84 sont :

Une mémoire programme de type flash de 1K (1024) mots de 14 bits

Une mémoire RAM constituée :

o Des registres de control SFR (Special Function Registers)

o 68 octets de RAM utilisateur appelés aussi GPR (General Propose Resisters)
Une mémoire EEPROM de donnée de 64 octets

Deux ports d'entrée sortie, un de 8 bits et un de 5 bits

Un timer/Compteur cadencé par une horloge interne ou externe

Un chien de garde / compteur qui est un timer particulier

Un prédiviseur de fréquence programmable permettant d'étendre les possibilités du Timer
TMRO et du chien de garde WDT

4 sources d'interruption

L'horloge peut étre générée par 4 types d'oscillateurs sélectionnables

Protection de code

Fonctionnement en mode sleep pour réduction de la consommation
Programmation par mode ICSP (In Circuit Serial Programming)

14 bits : fi
PORTA PORTB W 14 bits : conflg]
Horloge timer ALU
St THRO 16 registres
Prédiviseur syst?éme Mémoire
Horloge WDT Y dprogran;?qeh
: e type Flas
WDT timer utilisateur typ
64 octets 1024
EEPROM mots de 14 bits
64 octets

I.1 Aspect externe du 16F84

Le 16F84 est commercialisé dans un boitier 18 broches classique

RA2 0O1 ~ 188 RA1

RA3 0O2 178 RAO
RA4/TOCKI O3 163 OSC1
MCLRO4 pic 15 1 OSC2

VSS 05 16Fr8x 14H Vdd

RBO/INT O 6 138 RB7

RB1 O07 128 RB6

RB2 O8 1183 RB5

RB3 O9 108 RB4

Fig. I-1 : brochage du 16 F84

I.2 La mémoire programme (flash)

Cette mémoire de 1024 mots stocke le programme. Elle est non volatile et reprogrammable a
souhait. Chaque position de 14 bits contient une instruction. L'emplacement du programme peut
se situer a n'importe quel endroit de la mémoire. Cependant il faut savoir que suite a un RESET ou
lors de la mise sous tension, le PIC commence |'exécution a I'adresse 0000 4. De plus, lorsqu'il y a
une interruption, le PIC va a l'adresse 0004 h. Il est donc conseillé de placer le début du
programme aprés l'adresse 0004 4 et de mettre un branchement au début du programme a
I'adresse 00004 et un branchement au début de la routine d'interruption s'il y en a une a l'adresse
0004,,. Le programme est implanté dans la flash a l'aide d'un programmateur (hard+soft) sur
lequel nous reviendrons dans la suite de ce document.

I.3 La mémoire RAM - Rrgistres

La mémoire RAM est constituée de deux parties :

Les registres SFR (Special Function bank 0 bank 1
Register) ce sont les registres de 00 INDF INDF 80
fonctionnement du PIC. L'ensemble de ces | 01 TMRO OPTION 81
registres est souvent appelé fichier des 02 PCL PCL 82
registres. Nous reviendrons sur ces 03 STATUS STATUS 83
registres tout le long de ce document. 04 FBR FSR 84

05 PDRTA TRISA 85

Les registres GPR (General Propose | 06 PDRTB TRISB 86

Register) sont des positions mémoire que 07 B7

['utilisateur peut utiliser pour stocker ses 08 EEDATA EECON1 88

variables et ces données. On remarquera 09 EEADR EECON2 89

donc que, indépendamment de leur 0A PCLATH PCLATH 8A

nature, les position de la RAM sont 0B INTCON INTCON 8B

toujours appelé registres

0C 8C
La mémoire RAM est organisée en
deux banks, pour accéder a un registre, il (. .
faut d'abord se placer dans le bank ou il uTiﬁsn,;ct)gSr Maped in bank0
se trouve. Ceci est réalisé en positionnant
le bit RPO du registre STATUS. (RPO = 0 4.F C.F

— Bank 0, RPO =1~ Bank 1)

Registre STATUS [[P1 RPQ | [| I I |

Pour la mémoire utilisateur, I'utilisation des pages (Bank) n'est pas nécessaire puisque le Bank
1 est "mapped" avec le Bank0. Cela signifie qu'écrire une donnée a I'adresse 0C | ou a l'adresse
8Cy revient au méme.

I.4 L'ALU et le registre W

C'est une ALU 8 Bits qui réalise les opérations arithmétique et logique entre I'accumulateur W
et n'importe quel autre registre 'F' ou constante K. L'accumulateur W est un registre de travail 8
bits, il n'a pas d'adresse comme les autres SFR. Pour les instructions a deux opérandes, c'est
toujours lui qui contient un des deux opérandes. Pour les instructions a un opérande, celui-ci peut
étre soit W soit n'importe quel registre F. Le résultat de I'opération peut étre placé soit dans le
registre de travail W soit dans le registre F.

I.5 L'Horloge C1 0sc1 %
e

L'horloge peut étre soit interne soit externe. s Tﬁtemal
L'horloge interne est constituée d'un oscillateur a COXTAL '<'RF logic

rtz 'un oscill r RC. = e
quartz ou d'un oscillateur RC | 0SC2 Srcr

RS

Avec 'oscillateur a Quartz, on peut avoir des Cc2 PIC 16F84
fréquences allant jusqu'a 4, 10 ou 20 MHz selon le
type de uC. Le filtre passe bas RS, C2 limite les VDD
harmoniques dus a I'écrétage et Réduit I'amplitude
de l'oscillation. (il n'est pas obligatoire) Rext |

0sc1 | nternal
i ™ clock

Avec un oscillateur RC, la frequence de CextL lj
l'oscillation est fixée par Vdd, Rext et Cext. Elle peut v T L PIC 16F84

. oY ' . P SET] Ss —
varier légerement d'un circuit a l'autre. ﬁ e

0sC
Dans certains cas, une horloge externe au Recommended values: 5 kQ < Rext < 100 kQ
Cext > 20pF

microcontréleur peut étre utilisée pour synchroniser
le PIC sur un processus particulier.

Clock from ~{ So—m| OSCA1
PIC 16F84

Quelque soit l'oscillateur utilisé, I'horloge systeme &t system
dite aussi horloge instruction est obtenue en divisant Open -—— OSC2
la fréquence par 4. Dans la suite de ce document on
utilisera le terme Fosc/4 pour désigner I'horloge
systeme.

Avec un quartz de 4 MHz, on obtient une horloge instruction de 1 MHz, soit le temps pour
exécuter une instruction de 1ps.

1.6 Leportd' E/S PORTA

Le port A désigné par PORTA est un port de 5 bits (RAO a RA4). Chaque E/S est compatible
TTL. La configuration de direction pour chaque bit du port est déterminée avec le registre TRISA.

* Bit;jdeTRISA =0 bit; de PORTA configuré en sortie
Bit ; de TRISA =1 bit ; de PORTA configuré en entrée

La broche RA4 est multiplexée avec I'entrée horloge du timer TMRO, elle peut donc étre utilisée
soit comme E/S normale du port A, soit comme entrée horloge pour le Timer TMRO, le choix se fait
a l'aide du bit TOCS du registre OPTION_REG.

* TOCS=0 RA4 est une E/S normale
* TOCS=1 RA4 = horloge externe pour le timerTMRO — vdd

RA4 est une E/S a drain ouvert, si on veut 'utiliser comme sortie (pour
allumer une LED par exemple), il ne faut pas oublier de mettre une RA4 1k
résistance externe vers Vdd. Le schéma ci contre illustre (pour les non
électronicien) le principe d'une sortie drain ouvert (ou collecteur ouvert) : si /’_
RA4 est positionnée a 0, l'interrupteur est fermé, la sortie est reliée a la

. S . . LED
masse. Si RA4 est placée a 1, l'interrupteur est ouvert, la sortie est 7JT
déconnectée d'ou la nécessite de la résistance externe pour amener le
courant de I'alimentation vers la LED. (la valeur de 1k est donnée a titre

indicatif, a vous d'ajuster selon votre application)

Registre OPTION_REG RBPU | INTEDG | TOCS | TOSE | PSA §S2 PS1PSO | |

1.7 Leportd' E/S PORTB

Le port port B désigné par PORTB est un port bidirectionnel de 8 bits (RBO a RB7). Toutes les
broches sont compatibles TTL. La configuration de direction se fait a I'aide du registre TRISB. (Voir
PORTA / TRISA)

En entrée, la ligne RBO appelée aussi INT peut déclencher l'interruption externe INT.
En entrée, une quelconque des lignes RB4 a RB7 peut déclencher l'interruption RBI.
Nous reviendrons la-dessus dans le paragraphe réservé aux interruptions.

I.8 LeTimer TMRO

C'est un compteur 8 bits ayant les caractéristiques suivantes :

Il est incrémenté en permanence soit par I'horloge interne Fosc/4 (mode timer) soit par une
horloge externe appliquée a la broche RA4 du port A (mode compteur). Le chois de I'horloge
se fait a I'aide du bit TOCS du registre OPTION_REG

o TOCS =0 horloge interne

o TOCS =1 horloge externe appliquée a RA4

Dans le cas de I'horloge externe, on peut choisir le front sur lequel le TIMER s'incrémente.
o TOSE =0 incrémentation sur fronts montants

o TOSE=1 incrémentation sur fronts descendants PS2 PS1 RSODjv

00J0 2
* Quelque soit I'norloge choisie, on peut la passer dans un diviseur de 0 0=1 4

fréquence programmable (prescaler) dont le rapport est fixés par les 0110 8

bits PSO, PS1 et PS2 du registre OPTION_REG (tableau ci-contre). 01l 16

L'affectation ou non du prédiviseur se fait a I'aide du bit PSA du

registre OPTION_REG 1 0§0 32

o PSA =0 on utise le prédiviseur 1001 64

o PSA =1 pasde prédiviseur (affecté au chien de garde) 1 1J0 12¢
1 1]1 256

Le contenu du timer TMRO est accessible par le registre qui porte le
méme nom. Il peut étre lu ou écrit a n'importe quel moment. Aprées une écriture,
I'incrémentation est inhibée pendant deux cycles instruction

* Au débordement de TMRO (FF 00), le drapeau TOIF est placé a 1. Ceci peut déclencher
l'interruption TOI si celle-ci est validée

Registre OPTION_REG | | | TOCS | TOSE | PSA BS2 PS1 PSO | |

TOSE TOGS

' PSA
]
Ra4] I jv e
— 2 e— TMRO — TOIF
H
Prédiviseur 0

g c;tcléc;)r?q: — ~ 4 programmable
Y Fosc/4
Fosc f 1 1

PS2 PS1 PSO

1.9 Le WatchdogTimer WDT (Chien de garde)

C'est un compteur 8 bits incrémenté en permanence (méme si le uC est en mode sleep) par
une horloge RC intégrée indépendante de I'horloge systeme. Lorsqu’il déborde, (WDT TimeOut),
deux situations sont possibles :

* Sile pC est en fonctionnement normal, le WDT time-out provoque un RESET. Ceci permet
d'éviter de rester planté en cas de blocage du microcontréleur par un processus indésirable
non controlé

Si le uC est en mode SLEEP, le WDT time-out provoque un WAKE-UP, I'exécution du
programme continue normalement la ou elle s'est arrétée avant de rentrer en mode SLEEP.
Cette situation est souvent exploitée pour réaliser des temporisations

L'horloge du WDT est ajustée pour que Le Time-Out arrive toutes les 18 ms. Il est cependant
possible d'augmenter cette durée en faisant passer le signal Time-Out dans un prédiviseur
programmable (partagé avec le timer TMRO). I'affectation se fait a I'aide du bit

PSA du registre OPTION_REG PS2|PS1 IPSOibiv
o PSA =1 on utilise le prédiviseur 0401
o PSA=0 pasde prédiviseur (affecté & TMRO) 0412
0304
Le rapport du prédiviseur est fixé par les bits PSO, PS1 et PS2 du registre 04118
OPTION_REG (voir tableau ci-contre) 13016
10132
L'utilisation du WDT doit se faire avec précaution pour éviter la 11064
réinitialisation (inattendue) répétée du programme. Pour éviter un WDT 111128

timeOut lors de I'exécution d'un programme, on a deux possibilités :
* Inhiber le WDT d'une fagon permanente en mettant a 0 le bit WDTE dans I'EEPROM de
configuration

Remettre le WDT a 0 périodiguement dans le programme a I'aide de l'instruction CLRWDT pour
éviter qu'il ne déborde

PSA
~ _ - -7 - T S~ A N
Horloge . -
WDT * WDT —e-g o ®—> WDT timeout
Prédiviseur I
programmable
PS2 PS1 PSO

I.10 Le mode SLEEP

Le PIC peut étre placé en mode faible consommation a I'aide de l'instruction SLEEP. Dans ce

mode, I'horloge systeme est arrétée ce qui arréte I'exécution du programme.

Pour sortir du mode SLEEP, il faut provoquer un WAKE-UP, pour cela il y a 3 possibilités :

* RESET externe di a l'initialisation du PIC en mettant I'entrée MCLR a 0. Le PIC reprend

I'exécution du programme a partir du début.

Timeoutdu chien de garde WDT si celui-ci est validé. Le PIC reprend le programme a partir de

I'instruction qui suit l'instruction SLEEP

* Interruption INT (sur RBO) ou RBI (sur RB4-RB7) ou EEI (fin d'écriture en EEPROM de
données). Le bit de validation de l'interruption en question doit étre validé, par contre, le
WAKE-UP a lieu quelque soit la position de bit de validation globale GIE. On a alors deux
situations :

o GIE =0, Le PIC reprend l'exécution du programme a partir de l'instruction qui suit
l'instruction SLEEP, l'interruption n'est pas prise en compte

o GIE =1, Le PIC exécute l'instruction qui se trouve juste aprés l'instruction SLEEP puis se
branche a I'adresse 0004 pour exécuter la procédure d'interruption. Dans le cas ou
I'instruction suivant SLEEP n'est pas désirée, il faut utiliser I'instruction NOP.

L'utilisation des interruptions pour réaliser un WAKE-UP doit étre utilisée avec précaution. Voir
le data sheet[1][2] du 16F84 pour plus de précisions.

I.11 La mémoire EEPROM de configuration

Pendant la phase d'implantation d'un programme dans la mémoire programme du PIC, on
programme aussi une EEPROM de configuration constituée de 5 mots de 14 bits :
* 4 mots d'identification (ID) a partir de I'adresse 0x2000 pouvant contenir un repérage
quelconque que nous n'utiliserons pas,

1 mot de configuration (adresse 0x2007) qui permet :

o de choisir le type de l'oscillateur pour I'horloge

o de valider ou non le WDT timer

o d'interdire la lecture des mémoires EEPROM de programme et de données.

13 1211109876543 2 1 0
[cplcp ¢pce cp|cp cPCPCPEPPWRTEWIDTEFOSAL FOSAD | |

* bits 1:0 FOSC1:FOSCO Sélection du type d'oscillateur pour I'norloge
11 : Oscillateur RC
10 : Oscillateur HS (High speed) : quartz haute fréquence (jusqu'a 10 MHz)
01 : Oscillateur XT, c'est le mode le plus utilisé, quartz jusqu'a 4 MHz
00 : Oscillateur LP (Low power), consommation réduite, jusqu'a 200 kHz

* bit 2 WDTE validation du timer WDT (chien de garde)
1: WDT validé
0 : WDT inhibé
* Bit 3 PWRTE validation d'une temporisation a la mise sous tension

1: temporisation inhibée
0 : temporisation validée

* Bit 13:4 CP Protection en lecture du code programme
1 : pas de protection
0 : protection activée

I.12 La mémoire EEPROM de données

La mémoire EEPROM de données est constituée de 64 octets commencant a I'adresse 0x2100
que I'on peut lire et écrire depuis un programme. Ces octets sont conservés apres une coupure de
courant et sont trés utiles pour conserver des parametres semi permanents.

On y accede a l'aide des registres EEADR et EEDATA : toute lecture écriture dans le registre
EEDATA se fait dans la position mémoire pointée par EEADR. En fait EEADR contient I'adresse
relative par rapport a la page qui commence en 0x2100, autrement dit, I'adresse va de 0 a 63.

Deux registres de controle (EECON1 et EECON2) sont associés a la mémoire EEMROM.,

10

La durée d’écriture d’'un octet est de I'ordre de 10 ms, la fin de chaque écriture réussie est
annoncé par le drapeau EEIF et la remise a zéro du bit RW du registre EECON1. Le drapeau EEIF
peut déclencher l'interruption EEI si elle a été validée.

I1.12.1 Procédure de lecture dans I'EEPROM de données

Placer I'adresse relative dans EEADR
* Mettre le bit RD de EECON1 a 1
Lire le contenu du registre EEDATA

1.12.2 Procédure d'écriture dans 'EEPROM de données

L'écriture dans L'EEPROM doit étre autorisée : bit WREN = 1
Placer I'adresse relative dans EEADR

Placer la donnée a écrire dans EEDATA

Placer 0x55 dans EECON2

Placer OxAA dans EECON2

Démarrer I'écriture en positionnant le bit WR

Attendre la fin de I'écriture, (10 ms) (EEIF=1 ou WR=0)
recommencer au point 2 si on a d'autres données a écrire

ONPUTAWN

Le drapeau WRERR est positionné si une erreur d'écriture intervient

EECON1 - | [- | - |EelF|WRERR|WREN| WR | RD |

EECON2 n’en est pas véritablement un Registre. Microchip I'utilise en tant que registre de
commande. L'écriture de valeurs spécifiques dans EECON2 provoque |'exécution d'une commande
spécifique dans I'électronique interne du PIC.

I.13 Les interruptions

Une interruption provoque l'arrét du programme principal pour aller exécuter une procédure
d'interruption. A la fin de cette procédure, le microcontroleur reprend le programme a |I'endroit ou
il s'était arrété. Le PIC16F84 possede 4 sources d'interruption. A chaque interruption sont associés
deux bits: un bit de validation et un drapeau. Le premier permet d'autoriser ou non l'interruption,
le second permet au programmeur de savoir de quelle interruption il s'agit. Tous ces bits sont dans
le registre INTCON a part le drapeau EEIF de l'interruption EEI qui se trouve dans le registre
EECONI1.

1.13.1 Déroulement d'une interruption

Lorsque I'événement déclencheur d'une interruption intervient, alors son drapeau est
positionné a un (levé). Si l'interruption correspondante a été validée, elle est alors déclenchée : le
programme arréte ce qu'il est en train de faire et va exécuter la procédure d'interruption qui se
trouve a l'adresse 4 en exécutant les étapes suivantes :

I'adresse contenue dans le PC (Program Counter) est sauvegardée dans la pile, puis remplacée

par la valeur 0004 (adresse de la routine d'interruption).

Le bit GIE est placé "0" pour inhiber toutes les interruptions (afin qu'on ne soit pas dérangés

pendant I'exécution de la procédure d'interruption)

A la fin de la procédure d'interruption (instruction RETFIE) :

o le bit GIE est replacé a I'état haut (autorisant ainsi un autre événement)

o le contenu du PC est rechargé a partir de la pile ce qui permet au programme de reprendre
la ou il s'est arrété

Deux remarques importantes sont a faire :

11

e drapeau reste a I'état haut méme apres le traitement de l'interruption. Par conséquent, il
faut toujours le remettre a "0" a la fin de la routine d'interruption sinon l'interruption sera
déclenchée de nouveau juste aprés l'instruction RETFI

Seul le PC est empilé automatiquement. Si cela est nécessaire, les registres W et STATUS
doivent étre sauvegardés en RAM puis restaurés a la fin de la routine pour que le
microcontréleur puisse reprendre le programme dans les mémes conditions ou il I'a laissé.

1.13.2 L'interruption INT (Entrée RBO du port B)

Cette interruption est provoquée par un changement d'état sur I'entrée RBO du port B quand
elle est programmée en entrée. Elle est gérée par les bits :

- INTE : bit de validation (1=oui, 0=non)

- INTF : drapeau

- INTEDG : front de déclenchement, 1=montant, 0=descendant (registre OPTION_REG)

1.13.3 L'interruption RBI (RB4 A RB7 du port B)

Cette interruption est provoquée par un changement d'état sur I'une des entrées RB4 a RB7 du
port B, Le front n'a pas d'importance. Les bits associés sont RBIE (validation) et RBIF (drapeau)

1.13.4 L'interruption TOI : Débordement du Timer TMRO

Cette interruption est provoquée par le débordement du timer TMRO. Les bits associés sont
TOIE (validation) et TOIF (drapeau)

1.13.5 L'interruption EEI : Fin d'écriture dans 'EEPROM

Cette interruption est déclenchée a la fin d'une écriture réussie dans 'EEPROM.
Les bits associés sont EEIE (validation) et EEIF (drapeau).

INTCON GIE EEIE | TOIF | INTE | RBIE | TOIF | INTF | RBIF
EECON1 - - - EEIF
[OPTION_REG INTEDG

GIE : ce bit permet de valider ou d'interdire (globalement) toutes les interruptions

I.14 L'adressage indirect

L'adressage indirect se fait par I'intermédiaire des registres FSR et INDF. Le registre INDF n'est
pas un vrai registre mais représente la case mémoire pointée par le registre d'index FSR. Pour lire
ou écrire dans une case mémoire en utilisant I'adressage indirect, on commence par placer
I'adresse dans le registre FSR, ensuite on lit/écrit dans le registre INDF

I.15 Le conteur programme

Le Program Counter est un registre de 13 bits qui s'incrémente automatiquement lors de
I'exécution du programme. On peut toutefois le modifier par programme pour réaliser ce qu'on
appelle un goto calculé. On y accéde par les registres PCL et PCLATH

12

PCH

PCL

PCL (8 bits) est la partie basse de PC, il est accessible en lecture écriture
PCH (5 bits) est la partie haute de PC, il n'est pas accessible directement. On peut toutefois le

modifier indirectement a l'aide du registre PCLATH qui est une registre SFR accessible en

lecture écriture et ou seuls 5 bits sont utilisés.

1.15.1 GOTO calculé

Si on veut modifier le Program Counter pour réaliser un saut, il faut d'abord placer la partie
haute dans le registre PCLATH, ensuite on écrit la partie basse dans PCL. Au moment de I'écriture
dans PCL, le contenu de PCLATH est recopié automatiquement dans PCH

PCH

PCL

PCLATH

Ecriture dans PCL

Dans les instructions de branchement, 'adresse de destination est codée sur 11 bits. Lors de
I'exécution de telles instruction, les 11 bits sont copiés dans PC les deux bits manquants sont pris
dans PCLATH. Pour le 16F84, On n'aura pas besoin de ces bits car pour adresser 1024 lignes de
programme, seuls 10 bits du Programme Counter sont utilisés.

PC

N

PCLATH

.y

:::::::

I.16 Les indicateurs

11 bits venant de l'instruction

Les indicateurs C, DC, et Z sont des bits qui nous informent sur le résultat d'une instruction. Ils

sont situés dans le registre STATUS |

I [7] | [DC T C

le résultat est négatif.

I.17 Les instructions du 16F84

C (Carry) : ce bit Il passe a "1" lorsque le résultat d'une opération dépasse la valeur FF ou si

DC (Digital Carry) : ce bit passe a "1" lorsque une retenue s'est produite entre les bit 3 et 4.
Z (Zero) : Ce bit passe a "1", pour indiquer que le résultat de I'opération est nul.

Tous les PICs Mid-Range ont un jeu de 35 instructions. Chaque instruction est codée sur un
mot de 14 bits qui contient le code opération (OC) ainsi que I'opérande. A part les instructions de
saut, toutes les instructions sont exécutées en un cycle d'horloge. Sachant que I'horloge fournie au
PIC est prédivisée par 4, si on utilise par exemple un quartz de 4MHz, on obtient donc 1000000
cycles/seconde, cela nous donne une puissance de l'ordre de 1MIPS (1 Million d’ Instructions Par
Seconde). Avec une horloge de 20MHz, on obtient une vitesse de traitement plus qu’honorable.

1.17.1 Les instructions « orientées octet » (adressage direct)
Ce sont des instructions qui manipulent les données sous forme d’octets. Elles sont codées de

la maniére suivante :

13

- 6 bits pour l'instruction : logique, car comme il y a 35 instructions, il faut 6 bits pour pouvoir
les coder toutes

- 1 bit (d) pour indiquer si le résultat obtenu doit étre conservé dans le registre de travail
(accumulateur) W de I'unité de calcul (W pour Work) ou sauvé dans un registre F (F pour File).

- Reste 7 bits pour encoder I'adresse de I'opérande (128 positions au total)

Probléme ! 7 bits ne donnent pas accés a la mémoire RAM totale, donc voici I'explication de la
division de la RAM en deux banks. Pour remplacer le bit manquant, on utilise le bit RPO du registre
STATUS.

Bien qu'on ne I'utilise pas sur le 16F84, le bit RP1 est aussi réservé pour le changement de
bank, le 16F876 par exemple posseéde 4 banks.

1.17.2 Les instructions « orientées bits »

Ce sont des instructions destinées a manipuler directement les bits d'un registre d'une case
mémoire. Elles sont codées de la maniére suivante :

- 4 bits pour l'instruction
- 3 bits pour indiquer le numéro du bit @ manipuler (de 0a 7)
- 7 bits pour indiquer I'opérande.

1.17.3 Les instructions opérant sur une donnée (adressage immédiat)

Ce sont les instructions qui manipulent des données qui sont codées dans l'instruction
directement. Elles sont codées de la maniére suivante :

- Linstruction est codée sur 6 bits
- Elle est suivie d’'une valeur IMMEDIATE codée sur 8 bits (donc de 0 a 255).

1.17.4 Les instructions de saut et appel de procédures

Ce sont les instructions qui provoquent une rupture dans la séquence de déroulement du
programme. Elles sont codées de la maniére suivante :
- Les instructions sont codées sur 3 bits
- La destination est codée sur 11 bits

Nous pouvons déja en déduire que les sauts ne donnent acces qu’a 2K de mémoire
programme (2'!). Pas de probléme pour le 16F84 qui ne posséde que 1k de mémoire programme.

1.17.5 Exemples d'instruction

MOVWF F ; recopie W dans le registre d'adresse F : -
F (File) désigne I'adresse de n'importe quel registre SFR ou GPR. Pour les registres SFR, on peut
utiliser leurs noms a condition d'inclure le fichier p16F84.incdans le programme

MOVWF 0x2C ; recopie W dans la case mémoire d'adresse 2C,
MOVWF EEDATA ; recopie W dans le registre EEDATA
MOVF 0x08 ; recopie W dans le registre EEDATA

MOVF F,d ; recopie le registre F soit dans W soit dans lui-méme

Recopier un registre sur lui-méme peut paraitre sans intérét, mais comme _>
I'instruction positionne les indicateurs, cela peut s'avérer intéressant d=0

1.17.6 Le jeu d'instructions

14

INSTRUCTIONS OPERANT SUR REGISTRE (direct) indicateurs | Cycles
ADDWF F,d W+ {WF ? d} C,DC,Z 1
ANDWF F,d W apd F {WF ? d} Z 1
CLRF F Clear F Z 1
CLRW Clear W Z 1
CLRWDT Clear Watchdoc timer TO', PD' 1
COMF F,d Complémente F {W,F ? d} Z 1
DECF F,d décrémente F {W,F ? d} Z 1
DECFSZ F,d décifémente F {W,F ? d} skip if 0 1(2)
INCF F,d incrémente F~ {W,F ? d} Z 1
INCFSZ F,d incrémente F {W,F ? d} skip if 0 1(2)
IORWF F,d W orfF {W,F ? d} Z 1
MOVF F,d F {WF ? d} Z 1
MOVWEF F W F 1
RLF F,d rotation a gauche de F a travers C {W,F ? d} C 1
RRF F,d rotation a droite de F a travers C {WF ? d} 1
SUBWFF,dF-\W {WF ? d} C,DC,Z 1
SWAPF F,d permute les 2 quartetsde F {W,F ? d} 1
XORWE F,d W x¢r F {W,F ? d} Z 1
INSTRUCTIONS OPERANT SUR BIT
BCF F,b RAZ du bit b du registre F 1
BSF F,b RAU du bit b du registre F 1
BTFSC F,b teste le bit b de F, si 0 saute une instruction 1(2)
BTFSS F,b teste le bit b de F, si 1 saute une instruction 1(2)
INSTRUCTIONS OPERANT SUR DONNEE (Immediat)

ADDLW KW + K W C,DC,Z 1
ANDLW K W and K W Z 1
IORLW K W or K W Z 1
MOVLW K K W 1
SUBLW KK -W W C,DC,Z 1
XORLW K W xor|K W Z 1
INSTRUCTIONS GENERALES

CALL L Branchement a un sous programme de label L 2
GOTO L branchefent a la ligne de label L 2
NOP No operation 1
RETURN retourne d'un sous programme 2
RETFIE Retour d'interruption 2
RETLW K retourrje d'un sous programme avec K dans W 2
SLEEP se met en mode standby TO', PD' 1

{W,F ? d} signifie que le résultat va soit dans W si d=0 ou w, soit dans Fsid=1ou f

1.17.7 Etat de quelque registre a I'initialisation

STATUS IRP RP1 RPO | TO PD Z DC C__] 000x xxxx TRISA |---11111
OPTION_REG RBPU INTEDG JTOCS|TOSE| PSA PS2 | PS1 | PSO 1111 1111 TRISB | 1111 1111

INTCON GIE EEIE | TOIF JINTE] RBIE | TOIF | INTF | RBIF | 0000 000x PORTA | - - -X XXxx
EECON1 - - - | EEIF | WRERR|WREN | WR | RD |---0x000]| HORTB xxxx XXXX

15

II LES OUTILS DE DEVELOPPEMENT

Les étapes nécessaires permettant de voir un programme s'exécuter sur un PIC sont :

Ecrire un programme en langage assembleur dans un fichier texte et le sauvegarder avec
I'extension .asm

Compiler ce programme avec I'assembleur MPASM fourni par Microchip. Le résultat est un
fichier avec I'extension .hex contenant une suite d'instruction compréhensible par le pic.
Transplanter le fichier .hex dans la mémoire programme du PIC (mémoire flash) a I'aide d'un
programmateur adéquat. On peut utiliser les programmateurs de Microchip ou tout autre
programmateur acheté ou réalisé par soit méme.

Mettre le PIC dans son montage final, mettre sous tension et admirer le travail.

Microchip propose gratuitement I'outil de développement MPLAB qui regroupe I'éditeur de
texte, le compilateur MPASM, un outil de simulation et le logiciel de programmation. Le
programmateur lui-méme, n'est malheureusement pas gratuit.

Pour ce qui nous concerne, nous utiliseront MPLAB pour écrire, compiler et éventuellement
simuler nos programmes, ensuite nous utiliserons un programmateur fait maison pour implanter
les programmes dans la mémoire flash du PIC. Moi j'utilise le programmateur JDM avec le logiciel
ICPROG, les deux sont disponibles gratuitement sur le Web.

II.1 Deux mot sur MPLAB
MPLAB peut étre trouvé sur les CD distribués par Microchip ou téléchargé directement du site

Web http://www.microchip.com

Nous allons réaliser un tout petit programme sans grand intérét pour voir la procédure de
fonctionnement (avec MPLAB 6.30)

* Debugger ~> Select tool = MPLAB SIM (a faire une fois apreés installation de MPLAB)

* Configure ~ Select Device —> PIC16F64A

* Ouvrir une nouvelle fenétre (de I'éditeur) pour commencer a écrire un programme : file
new ou cliquez sur l'icone feuille blanche

Taper le petit programme ci-dessous dans la fenétre qui vient de s'ouvrir. Ce programme
incrémente sans fin la position mémoire (RAM) 0Cy

loop incf 0x0C,1
goto looop
end

Sauvegarder (file save) ce programme dans la directory de votre chois sous le nom
bidon.asm

Lancer la compilation du programme a l'aide de la commande project Quikbuild
Apparemment il y a un probléme, le compilateur nous dit qu'il y une erreur a la ligne 2 :
Error[113] C:\...\BIDON.ASM 2 : Symbol not previously defined (looop)

Evidemment, le label loop définit dans la ligne précédente prend seulement deux o. Corrigez et
recommencez. Cette fois ¢a a I'air d'aller. On peut vérifier que le compilateur a crée le fichier
bidon.hex dans la méme directory ou se trouve bidon.asm. Les fichiers bidon.cod, bidon.err et
bidon.Istne nous servent a rien pour l'instant on peut les détruire.

Nous pouvons maintenant exécuter notre programme en simulation pour voir s'il réalise bien la
tache demandée :

16

- Ouvrez la fenétre qui visualise la mémoire RAM : view FileRegisters. La case mémoire
0x0C se trouve sur la premiere ligne (ligne:0000, colonne:0C)

- Exécuter maintenant le programme PAS a PAS en cliquant a chaque fois sur le bouton Step
Into Y en observant la case mémoire OC . (on dirait que ga marche).

On peut aussi exécuter en continu en cliquant sur le bouton animate[], pour arréter, il faut
cliquer sur le bouton halt[]]

Pour plus de détail, consulter le manuel d'utilisation de MPLAB

I1.2 Les directives de MPASM

Les directives de I'assembleur sont des instructions qu'on ajoute dans le programme et qui

seront interprétées par I'assembleur MPASM. Ce ne sont pas des instructions destinées au PIC.

I1.2.1 Les directives les plus utilisées

LIST : permet de définir un certain nombre de parametres comme le processeur utilisé (p), la
base par défaut pour les nombres (r), le format du fichier hex a produire (f) ainsi que d'autres
parameétres. Exemple :

LIST p=16F84A, r=dec, f=inhx8m

INCLUDE : permet d'insérer un fichier source. Par exemple le fichier p16f84A.inc contient la
définition d'un certain nombre de constante comme les noms des registres ainsi que les noms
de certain bits;

INCLUDE "p16f84A.inc"

__CONFIG : permet de définir les 14 fusibles de configuration qui seront copié dans I'EEPROM
de configuration lors de l'implantation du programme dans le PIC (protection de code, type
d'oscillateur, chien de garde et temporisation du départ)

_ _CONFIG B'11111111111001"

__CONFIG H'3FF9'

si le fichier p16f84.inc a été inséré, on peut utiliser les constantes prédéfinies :

_ CONFIG _CP_OFF & _XT_OSC& _PWRTE_OFF & _WDT_OFF

EQU : permet de définir une constante ou une variable :

XX EQU 0x20

Chaque fois que le compilateur rencontrera XX, il la remplacera soit par la constante 0x20. ¢a
peut étre une constante s'il s'agit d'une instruction avec adressage immédiat, ou d'une adresse
s'il s'agit d'une instruction avec adressage direct.

#DEFINE : définit un texte de substitution
#DEFINE pos(x,y,z) (y-2z+x)
Chaque fois que le compilateur rencontrera le texte pos(x,y,z), il le remplacera par (y-2z+x)

ORG : définit la position dans la mémoire programme a partir de laquelle seront inscrites les
instructions suivantes.

CBLOCK/ENDC : définit un bloc de constantes
CBLOCK 0X0C ; var1=0x0C, var2=0x0D, k=0x0D
varl,var2

k

ENDC

17

DE : pour déclarer des donnés qui seront stockée dans I'EEPROM de donnée au moment de
I'implantation du programme sur le PIC

ORG 0x2100

DE "Programmer un PIC, rien de plus simple", 70, 'Z'

DT : pour déclarer un tableau RETLW
proc addwf PCL,f ; saut a la position : (position suivante + W)
DT "Programmer un PIC",23,0x47 ; L'assembleur remplacera cette ligne par la suite

d'instructions :
RTLW 'P'
RTLW 'r'
RTLW '0'
RTLW 'C'
RTLW 23
RTLW 0x47

END : indique la fin du programme
Pour plus de détail sur les directives de MPASM, voir "MPASM USER'S GUIDE"

I1.3 Format des nombres

L'assembleur reconnait les nombres en décimal, hexadécimal, binaire ou octal. Pour préciser la

base il faut utiliser les préfixes précisés dans le tableau ci-dessous :

On peut a l'aide de la directive LIST ou RADIX définir Base Préfixe Exemple (36)

un format par défaut. Si par exemple on place une des Décimal D'nnn' D'36'

instructions suivantes au début du programme, tous les .nnn .36

nombres sans préfix seront interprétés en décimal : Hexadécimal H'nn' H'24'

LIST r = dec Oxnn 0x24

RADIX dec nnh 24h

(les radix valables sont dec, hex ou oct) Binaire B'...." B'00100100'
Octal O'nnn’ 0'44'

II1.4 Structure d'un programme écrit en assembleur

Un programme écrit en assembleur doit respecter une certaine syntaxe et un certain nombre

de regles afin qu'il soit facile a lire et a débuguer :

Tout ce qui commence a la premiére colonne est considéré comme une étiquette (label)
permettant de faire des renvois et aussi des assignations de constantes et de variables.

tout ce qui suit un point virgule est considéré comme un commentaire non interprété par le
compilateur

Un programme apparait donc comme un texte écrit sur 3 colonnes :
- la colonne de gauche contient les étiquettes
- la colonne du milieu contient les l'instructions
- la colonne de droite contient des commentaires

Il existe différentes écoles indiquant comment doit étre organisé un programme. Voici un
exemple d'organisation :

1) Quelques lignes de commentaire précisant la fonction du programme,

2)

3)

4)

5)

6)

7)

18

Configuration, exemple :

LIST p=16f84, f=inhx8m, r = dec
INCLUDE "p16f84.inc"
__CONFIG H'3FF9'

Définition des constantes et des variables, exemple :
led equ 0
X equ 0x0C
cblock 0x0D
/24
u,v,w
endc

Si le programme utilise des interruptions, mettre a I'adresse 0000 (adresse du RESET) une
instruction de branchement au début du programme principal :

org 0
goto debut

Ecrire la routine d'interruption a I'adresse 4

ORG 4
écrire la routine d'interruption ici
RETFIE

Si le programme est configuré pour interdire les interruptions, on peut se passer des
étapes 4) et 5),

Ecrire les sous programmes (s'il y en a). Chaque procédure commence par une étiquette
qui représente son nom, et se termine par l'instruction RETURN

Ecrire le programme principal (commencant par I'étiquette début: si les étapes 4 et 5 sont
présentes)

8) terminer avec la directive END

19

II.5 Exemples de programme

hkkkkkkkkkkkkkkkkkkhhkkkkkkkkkkkkhkkkkhhhkkkhkkkkhkkkhhhkkkhhkkkhkkkhhhkhhhkkkhkrkkhhhkkkhkkkhkkrkkkkkkhkr

; programme led_int.asm
; on connecte un interrupteur sur RBO (entrée) et une LED sur RB1 (sortie)

LIST p=16f84A, f=inhx8m, r = dec
INCLUDE "p16f84A.inc"
__CONFIG _CP_OFF & _XT_0OSC& _PWRTE_OFF & WDT_OFF

bsf STATUS,RPO ; bank 1
moviw B'00000001'
movwf TRISB ; pour configurer RBO en entrée
bef STATUS,RPO ; bank 0
tst btfss PORTB,0
goto off
bsf PORTB,1
goto tst
off bef PORTB, 1
goto tst
end

; programme led-tmr0-1.asm
; faire clignoter une LED connectée sur une sortie du port B, la temporisation permettant d'ajuster la fréquence

LIST p=16f84A, f = inhx8m, r = dec
_ CONFIG _CP_OFF & _XT_OSC & _PWRTE_OFF & "WDT_OFF
INCLUDE "p16f84A.inc"
CTRequ 0x0C
bsf STATUS,RPO ; bank 1 (pour TRISB et OPTION_REG)
clrf TRISB : PORTB en sortie
moviw B'00000111"'
movwf OPTION_REG ; PSA=0, prédiviseur affecté a TMRO, PS1 PS2 PS3 = 111, div = 256
; TOCS=0, horloge TMRO = fosc/4/div
bef STATUS,RPO ; retour a bank 0
encore:; comf PORTB,f ; complémenter PORTB
call delay ; attendre un peu
goto encore ; recommencer
delay: moviw 5 ; pour attendre que TMRO déborde 5 fois
mowf CTR ; ce qui donne 5 x 256 x 256 s
tst: btfss INTCON,TOIF ; attendre que TMRO déborde
goto $-1
bef INTCON,TOIF ; baisser le drapeau
decfsz CTRf ; pour recommencer CTR fois
goto tst
return

end

20

hkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkhhkkkhkkkhhhkkhhkkkhhkkhhhkkkhkkkhkrkrhhhrkkhkkkkhkrkhkrkhhhkkkhkrkhkhkkkhkkhhkkkhkhkkks

; programme led-tmr0-2.asm

; faire clignoter une LED connectée sur une sortie du port B. La temporisation permettant d'ajuster la

; fréquence est obtenue en comptant les débordements du timer TMRO a l'interieur de l'interruption TOI
; TMRO est utilisé en timer avec un prédiviseur de 256. En comptant 5 débordement on obtient une

; temporisation de 4 x 256 x 256 s

list p=16f84,f=inhx8m,r=dec
__config _PWRTE_OFF & _CP_OFF & "WDT_OFF & _XT_OSC
#include "p16f84.inc"
CTR equ 0x0C ; varible de comptage
| S================ démarrage sur RESET
org 0
goto start
; == procedure d'interruption
org 4
bef INTCON,TOIF ; baisser le drapeau levé par l'interruption
decfsz CTRf
retfie
comf PORTB,f ; changer I'état de la LED
moviw 5 ; initializer compteur
movwf CTR
retfie
; == Programme principal
start bsf STATUS,RPO ; select bank1
cirf TRISB ; programme tous les bits du bort B en sortie
moviw B'00000111' ; mode timer, prédiviseur pour TMRO, div=256
movwf OPTION_REG
bef STATUS,RPO ; select bank0
moviw B'10100000' ; autorisation Interruption TOI
movwf INTCON
moviw 5 ; initialise CTR pour le premier passage
movwf CTR
Loop goto Loop ; le PIC reste planté ici et n'en sort que pour aller

end

; executer une interuption due au débordement de TMRO

hkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkhkhkhkkkkkhkhkkkkkkkkkkkkkkkkhkkkkkkkhkhkkkkkkkkhkkkkkkkkkkkkkkkhkkhkkkhkkkkkkkkkk

; Clignotement d'une LED reliée a la sortie 0 du port B. Les autres bits du port B ne sont pas affectés

list p=16f84, f=inhx8m, r = dec
__config _PWRTE_OFF & _CP_OFF & "WDT_ON & _XT_0OSC

#include "p16f84A.inc"
bsf STATUS,RPO ; select bank1
bef TRISB,0 : RBO en sortie
moviw B'00001101' ; prescaler affecté au WDT, prescaler = 101 = 32
movwf OPTION_REG ; débordement du WDT tous les 32 x 18ms = 0.576 s
bcf STATUS,RP0 ; select bank0
moviw 1 ;bit0deWa1,leautres a0,

Loop: sleep ; passe en mode sleep, réveil dans 0.576 s
xorwf PORTB,f ; complémente le bit 0 de PORTB
goto Loop ; recommence la loupe indéfinitivement

end

chkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkhkkkkkhkkkkkkkhkkkhkkkkkhhkkkkkkkkkkkkkkk

; Clignotement d'une LED reliée a n'importe quelle sortie du port B. La temporisation est réalisée a I'aide d'une boucle de
; retard a base de 3 boucles imbriquées N1 (256), N2 (256), N3 (a préciser)
; T1:(N1-1) x (142) + 2 => N1=0=256 => T1 = 767 us
;T2 T1 + (N2-1) x (142+T1) + 2, N2=0 => T2 = 196352 s
T3 T24(N3-1) x (142+T2) + 2+ 2= N3 x 196355 + 1 s (je croix)
list p=16f84, f=inhx8m, r=dec
#include "p16f84A.inc"
__config _CP_OFF & _WDT_OFF & _XT_OSC & _PWRTE_OFF

N1 equ 0x0D ; N1,N2,N3 = compteurs temporisateur
N2 equ Ox0E
N3 equ OxO0F
; = = Programme principal
bsf STATUS,RPO ; select bank1
clrf TRISB ; programme tous les bits du bort B en sortie
bef STATUS,RPO ; select bank0
loop: comf PORTB,f ; complémente PORTB
moviw 3 ; 3 donne une tempo voisine de 0.6 s
call tempo
goto loop ; recommence la loupe indéfinitivement

- = Procédure de temporisation

tempo: movwf N3 ; copier W dans N3
tmp decfsz N1 f : boucle intérieure
goto tmp

decfsz N2 f : boucle médiane
goto tmp

decfsz N3 f : boucle extérieure
goto tmp
return

end

I1.6 Références

[1]
[2]
[3]

PIC16F8X, document DS30430C, www.microchip.com

PIC16F84a, document DS35007A, www.microchip.com

Programmation des PIC, Premiére partie-PIC16F84-Révision 5, par BIGONOFF,
http://www.abcelectronigue.com/bigonoff/organisation.php?2654c

22

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

